
Developing Human Performance Models Using Apex / CPM-GOMS
for Agent-Based Modeling and Simulation

Seung Man Lee, Roger Remington, Ujwala Ravinder, and Michael Matessa

NASA Ames Research Center
MS 262-4

Moffett Field, CA 94035
{smlee, rremington, uravinder, mmatessa} @mail.arc.nasa.gov

Keywords: Human performance, Apex, GOMS, Agent-based,
Air traffic control (ATC)

Abstract
This paper reports on the development of agent models with
human-like performance characteristics for use in agent-based
modeling and simulation. The goal of our effort is to develop a
computational human agent model that can be incorporated into an
agent-based simulation to evaluate the impact of new technologies,
such as datalink technology, on the workload and situation
awareness of air traffic controllers. To provide models of advanced
airspace, domain and task knowledge must be integrated with
human performance characteristics to achieve a specification of
controller functionality. Our approach combines a task analysis,
which provides a functional description of the domain, with a
human performance architecture, from which detailed performance
predictions can be made. This paper presents how a standard task
analysis can be paired with a human performance model to
generate behavior that approximates that of the human operator.
This paper will also outline the issues of integrating human
performance models into a large-scale distributed agent-based
simulation.

INTRODUCTION

 Modeling and simulation have emerged as critical tools for
the design and safety analysis of large-scale complex systems such
as the National Airspace System (NAS) [1]. To be a useful design
and analysis tool, simulation requires suitable element-level
models, such as dynamic models of physical machines, to predict
the evolution of complex interactions of the elements. While this
approach has been successfully applied to physical system
components, only recently have modeling and simulation of human
behavior begun to be explored. Humans are integral system
components and critical elements to the performance and safety of
the large-scale complex systems. Human capabilities and
limitations must be taken into account when developing
procedures, interfaces, and systems. Therefore, system modeling
and simulation will be more effective if it includes human
characteristics as an essential feature.
 Though the scientific understanding of human behavior is far
from complete, current theories and findings have enabled
successful modeling of human-computer interaction (HCI) [2].
However, this success has not generalized to the modeling and

simulation of large-scale dynamic systems. In part this is because
the development of computational human performance models
requires spending a great deal of time, cost, and expertise on
human cognition and behaviors. Also, human performance models
typically execute in their own unique simulation environments. For
widespread use it will be preferable to integrate human models into
system simulations along with other system components.
 In simulating large-scale complex systems agent-based
modeling and simulation (ABMS) has proven to provide
robustness and flexibility. Also, by combining multiple agents it is
possible to observe emergent properties of interactive behavior [3].
Agent-based simulation integrates human-like agent models in a
dynamic representation of their environments, which includes
detailed models of the physical and technical systems. However,
given the complexity of human performance models, creating the
ability to interact with other simulation models can require
signification adaptations.
 Several recent studies have examined using such human
performance models as agents in large-scale agent-based
simulations to evaluate air transportation systems [4-6]. These
human agent models drive high-level behaviors by applying
domain knowledge. However, they do not attempt to model the
capabilities and constraints on human performance. The recent
developments in computational modeling of cognitive human
agents provide a new scientific paradigm for addressing and
understanding fundamental aspects of human behavior and
cognition at the individual level and system level. Our goal is to
extend the capability of human agent models by developing an
agent that produces human-like behaviors. We have designed this
agent for the evaluation of new advanced air transportation
concepts. By capturing performance characteristics we believe it
will be possible to estimate factors such as workload, multitasking,
and operator throughput.
 There are several issues in developing agent models of human
behavior and cognition. First, the representation of human behavior
and cognition must be able to provide insight into the impact of
human performance on overall system performance to predict
global consequences of system changes [7]. Second, agent models
of human behavior and cognition must be able to be easily
modified and quickly adapted to new situations. Existing human
performance models typically require deep knowledge of human
behavior and cognition and a great amount of time and efforts to
develop a new human performance model for a specific domain of
interest. Third, agent models of human behavior and cognition
should be implemented in a computational architecture with the
capability for representing the range of behavior found in complex

task domains, and that can be be incorporated into a large-scale
simulation environment to interact with other agents.
 In this paper, we describe a framework for developing agent
models to resolve those issues using Apex (Architecture for
Procedure Execution) developed at NASA Ames [8]. Apex is
designed for generating adaptive, intelligent human behavior in
complex, dynamic environments such as the air transportation
system. Apex incorporates many high-level aspects of cognition
such as action selection under uncertainty, managing multi-tasking,
and task interleaving. Apex includes a range of components for
modeling, simulating and analyzing human behavior, so Apex
makes it easier to create human performance models. By
facilitating model development and modification Apex makes it
possible to test a wide variety of procedures and interfaces and to
examine the impact of new technologies such as data link on the
overall performance and safety of the NAS.
 Our approach combines a task analysis, which provides a
functional description of the domain, with a human performance
architecture, from which detailed performance predictions can be
made. We have previously reported on a method that seamlessly
links task analysis with elementary human performance
components. This linkage is the basis for much of the usability of
Apex. Before describing our air traffic control model, we briefly
describe our approach to human performance modeling.

APEX HUMAN AGENT MODELING

 In modeling human performance, economy can be achieved
by representing the human agent in terms of fundamental
characteristics constant across situations. This aspect of the agent
can be reused across domains. The model must also represent
domain and procedural knowledge, typically represented in a task
analysis. Our modeling approach draws on previous work [2, 9]
that integrates task with human characteristics in a unified
representation. This representation extends the task analysis by
including a fundamental human resource architecture at the level
of cognitive, perceptual, and motor (CPM) operators.
 The task analysis consists of a hierarchical task
decomposition based on the Goal, Operators, Methods, and
Selection (GOMS) technique [2]. The resource architecture
currently implemented is based on CPM-GOMS [10], an extension
of GOMS. CPM -GOMS is a modeling method that combines a
hierarchical task decomposition with a resource architecture. The
GOMS analysis terminates in low-level Cognitive, Perceptual, and
Motor operators. CPM -GOMS models have made accurate, zero-
parameter predictions about skilled user behavior in routine tasks.
CPM -GOMS specifies the parallelism and timing of elementary
cognitive, perceptual, and motor operators [11].
 The inclusion of a fixed processing architecture at this level of
detail allows our agents to capture important characteristics of
human performance that remain fixed across tasks and domains.
Capturing resource demands is a crucial component of predicting
how effectively displays and controls are designed, or how
efficiently two concurrent tasks can be done. Resource allocation
policy is central to learning how to perform in a task context, and
the competition for limited resources determines how tasks are
sequenced at a detailed level of performance. The method we
describe is being applied to simulate the performance of a human
operator for the purpose of evaluating new concepts of advanced
air transportation system.

 We have recently described an approach for automatically
generating CPM-GOMS analyses using the Apex computational
architecture [12]. The automation of CPM-GOMS in Apex makes
it practical for the first time to derive detailed predictions of human
performance with complex tasks and interfaces. We have focused
initially on evaluating routine human-system interaction by
predicting the time and resource demands of accomplishing
common interface tasks.

Apex Human Agent Architecture
 In our approach performance on a task is constructed from
elementary human cognitive, perceptual, and motor operators,
whose characteristics are relatively constant across domains. Key
to our success with the compositional approach has been the
development of a method for automatically scheduling these
elementary human resources, which was achieved using the Apex
computational architecture. A high-level architecture of Apex is
shown in Figure 1.

monitors

matcher

Waiting
monitor

Task
Handler

match

task cogevent

agenda

Procedures
retrieved

procedure

ne
w

 ta
sk

en
ab

le
d

ta
sk

add/remove monitors

Audition Vision Gaze/Attn Memory Hands Voice

Action
Selection

Architecture

Human
Resource

Architecture

perception
cogevent

start
activity

Simulated World Environment

monitors

matcher

Waiting
monitor

Task
Handler

match

task cogevent

agenda

Procedures
retrieved

procedure

ne
w

 ta
sk

en
ab

le
d

ta
sk

add/remove monitors

Audition Vision Gaze/Attn Memory Hands Voice

Action
Selection

Architecture

Human
Resource

Architecture

perception
cogevent

start
activity

Simulated World Environment

Figure 1. The Architecture of Apex

 The modeling framework includes a Resource Architecture,
an Action Selection Architecture, and a Procedure Library. The
resource architecture defines the limited-capacity cognitive,
perceptual, and motor components as shown in Figure 1. The
action selection architecture coordinates the activity of the
resources and applies knowledge in the form of procedures. The
procedure library contains the knowledge the agent applies to
perform in the target domain. All knowledge in Apex is in the form
of procedures. Information about the world is input through
perceptual processes, which have limited capacity. Incoming
information is matched against the specifications of procedures in
the procedure library. If conditions for a procedure are detected
then the Action Selection Architecture schedules the steps of the
procedure in accordance with the constraints specified below.
 As discussed earlier the model combines the CPM-GOMS
task analysis with the Apex computational architecture, which
provides the underlying simulation framework. Apex is a software
tool for creating, running and analyzing simulations of intelligent
agents carrying out human-computer interaction tasks. Apex treats
the problem of modeling behavior as a problem of scheduling an
agent’s limited resources. The agent architecture incorporates a
reactive planning and execution mechanism with integrated online
resource scheduling and other capabilities needed to handle

multiple tasks. Both the general capabilities of a reactive planner
and the multitask management extensions specific to Apex have
proven central in automating CPM-GOMS models.
 The reactive planner recursively decomposes high-level goals
into subgoals and primitive operators based on stored plans. It does
not generate the goal hierarchy all at once. Instead, it waits until all
preconditions associated with a given goal are satisfied before
retrieving a plan to specify subgoals. Deferring goal decomposition
until near execution time enables the planner to choose how to
decompose (i.e. which procedure to use) with as much situation
information as possible. This strategy is essential for tasks such as
air traffic control where uncertainty about future world state is high
and the need for careful deliberation, either to solve complex
problems or to choose optimally from a wide range of possible
solutions, is low. The reactive planner allows the Apex controller
agent to be interrupted by voice communications or by alerts that
signal the need for immediate action.

Templates of Elementary Human Behaviors
 Representing the human agent in terms of elementary
cognitive, perceptual, and motor actions may allow generalization,
but it increases the complexity and difficulty of constructing
human performance models. Modeling human performance at this
level requires spending a great deal of time, cost, and expertise on
human behaviors.
 To facilitate model construction, we decompose a complex
task into a set of templates, primitive task-level operations that
represent the building blocks from which other task behavior will
be constructed [13]. Templates incorporate a psychological theory
of the cognitive, perceptual, and motor components of basic human
activities and dependencies between these components. The choice
of primitives and the method of combining basic cognitive,
perceptual, and motor operations into larger behavior units are
critical in constructing reusable and scaleable templates. For
example, a template of move-and-click trackball action can be used
to build models of other tasks.
 In CPM -GOMS, the top -level goal is decomposed into
subgoals down to the level of templates. Apex composes long
behavioral sequences by interleaving the templates for successive
behaviors. Composing behavioral sequences in this way from
templates that describe fundamental task actions allows the model
to easily simulate the overlapping of tasks characteristic of skilled
human performance. Templates remove the burden of
understanding and programming in the underlying cognitive
architecture. Consequently, the use of templates could make
cognitive modeling more accessible to a wider range of domain
experts. Templates may allow modelers to easily incorporate
existing models of generalized capabilities into models of more
complex tasks.
 The process in CPM-GOMS of producing a goal hierarchy by
recursively applying methods to non-primitive goals (those that do
not correspond to an operator) does not end at the level of
templates. Instead, templates themselves are decomposed into
simpler behavioral units, ending when leaf nodes of the hierarchy
form a set of operator-level actions composed of elementary
cognitive, perceptual, and motor activities. Thus, the task
decomposition is carried out uniformly at all levels. By modeling
these elementary behaviors we can develop a library of behaviors
from which to construct larger behavioral sequences. In this way,
we bridge the gap between the standard task analysis and a human
performance model of some detail.

 There are two issues that arise in this compositional approach:
how templates are constructed, and how they are combined to
produce extended behavioral sequences. We have previously
reported a method of interleaving the elements of successive
templates that provides excellent fits to observed data [12]. The
details of this method are beyond the scope of this paper, but in
brief, we have successfully fit data from human-computer
interaction tasks including mouse-based automated teller
simulations, typing, and computer aided design tasks. The method
is currently being applied to shuttle cockpit procedures, airline
cockpit procedures, and air traffic control operations.
 Our compositional approach to simulating behavior relies on a
theory of resources to predict concurrency, and on a software
architecture to execute reactive plans. Concurrent operator
execution occurs within and across templates. Within-template
concurrency arises because cognitive, perceptual, and motor
operators call on separate, independent resources. Between-
template concurrency arises from the interleaving of operators
from different templates. The essence of the interleaving
phenomenon is that the activities specified by a template do not
use all resources all of the time; idle time (slack) in the use of a
resource by one template’s operators represents an opportunity for
operators from a later template to “slip back” and begin execution.
Interleaving at the level of CPM-GOMS operator-level goals
corresponds to overlap in the execution of higher-level goals – i.e.
at the level of templates or classic GOMS operators – and thus
accounts for the different predictions of the CPM-GOMS and
classic GOMS approaches.
 In order to allow Apex models to participate in large-scale
simulations of the national airspace system, we integrated Apex
into the ACES (Advanced Concepts Evaluation System)
simulation environment developing at NASA [14].

INTEGRATION OF APEX INTO ACES

 In the Virtual Airspace Modeling and Simulation (VAMS)
project, a joint NASA and FAA effort, modeling and simulation
methods are being applied to evaluate the effect of changes in the
operation of the national airspace. New concepts and technologies
are being proposed as potential ways of increasing the capacity and
safety of air transportation system. Several airspace concepts
involve advanced automation on the ground communicating with
automated systems onboard aircraft to negotiate clearances
automatically. New automation under consideration would provide
individual pilots and air traffic controllers more information about
their situation, and help them in predicting near-future states of the
airspace. VAMS is developing the modeling and simulation
infrastructure that would allow the effect of these proposed
changes to be evaluated.
 To simulate novel airspace concepts VAMS has developed a
new airspace simulation system, ACES. Briefly, ACES is a
distributed agent-based event-driven simulation for the analysis of
the NAS supporting common communications protocols. For the
distributed simulation, ACES uses the High-Level Architecture
(HLA) standard developed by the US Department of Defense
(DOD) and the Run-Time Interface (RTI) available from the
Defense Modeling and Simulation Office (DMSO) [14]. ACES
provides key agent models for the NAS simulation, including
aircraft, airport, Terminal Radar Approach Control (TRACON),
Air Route Traffic Control Center (ARTCC), Airline Operations
Center (AOC), and weather. These different types of agents are

interacting with each other through message passing during the
simulation. ACES models the dynamic behavior of different
aircraft types, as well as the procedures and communications
agents such as aircraft and air traffic control. In its current build,
ACES represents agents at a level that abstracts over individual
humans and human-system interfaces. Since an important goal for
us is to evaluate such interfaces, we model the entire joint human-
system, and use the combined output to control an ACES agent.
 In this research, a simple Apex human agent model for air
traffic controller was developed to perform the functions of an
individual air traffic controller in the simulation. A human-like
agent must meet a set of functional requirements that derive from
the role it will play in the simulation, and from our desire to
closely match human behavior. One of practical issues was how to
integrate these two different simulation systems to run seamlessly
together. Apex is written in Lisp while ACES is a Java-based
simulation system. To enable communication between these two
systems written in different programming languages we developed
communications interfaces and protocols using sockets. For
example, the Apex controller agent communicates with ACES
agents through a TCP/IP socket channel as shown Figure 2.
Conceptually, ACES is responsible for all vehicles, air space
entities, and the simulation environment. Apex is responsible for
interpreting the simulation world and controlling the aircraft, as a
human controller does.

ACES (Airspace Concept Evaluation System)

Flight
Agent

TRACON

Agent

Other
Agents

Java-based Distributed Agent-Based Simulation

Communication Interface

Lisp-based APEX

Human Performance Model

APEX

Controller
Agent
Model Socket

Communication Communication
Interface

ATC

Agent Open Cybele
Message

Communication

ACES (Airspace Concept Evaluation System)

Flight
Agent
Flight
Agent

TRACON

Agent

TRACON

Agent

Other
Agents
Other

Agents

Java-based Distributed Agent-Based Simulation

Communication Interface

Lisp-based APEX

Human Performance Model

APEX

Controller
Agent
Model

APEX

Controller
Agent
Model Socket

Communication Communication
Interface

ATC

Agent

Communication
Interface

ATC

Agent Open Cybele
Message

Communication

Figure 2. Integration of Apex into ACES

 The Apex-ACES Interface (AAI) translates simulated
displays and vehicle information into the representation used by
Apex and translates Apex’s action representation into ACES
function calls (e.g., to control the vehicle and to manipulate
sensors, radios, and displays). To control the vehicle’s motion
Apex issues output commands to a corresponding ACES agent.
AAI converts the output commands to OpenCybele message
format, which can then be interpreted by other agents in the
simulation. Currently, control of a vehicle occurs through setting
the desired state of the vehicle such as its speed, heading, and
altitude.
 Apex is used to model both the human agent and the displays
and controls the agent interacts with. In this way, timing of agent
actions and delays imposed by the equipment and user interface
can be simulated at high fidelity. Communication with the ACES
simulation will occur at synchronized message passing times in
accordance with ACES protocols. This arrangement is depicted in
Figure 2. This scheme provides a natural division between the

human performance model and the ACES-level agent. The ACES
incorporates objects that represent high-level agents. The Apex
agent need only transmit to its ACES counterpart those messages
of significance in the larger context. Thus, while each keystroke of
data entry into flight computers must be simulated to predict the
time, the ACES-level agent need only be informed when the
keystrokes produce some change in the its state, such as activating
a mode, or changing a control setting.

AIR TRAFFIC CONTROL TASK ANALYSIS

 Our Apex agent functions as an air traffic controller who
controls traffic in a single enroute sector. At present, ground based
air traffic control installations have responsibility for routing of
aircraft and maintenance of safe separation between aircraft. There
are three principle types of installation: tower, TRACON, and
enroute. Tower control handles surface operations including take-
off and landing. TRACON handles arrival and departure sectors
for airports. Enroute handles the remainder of the flight between
departure and arrival sectors. A controller in the ATC
environment, for instance, monitors the ongoing flights, responds
to various pilot requests, and adjusts to weather conditions by
instructing pilots to alter their aircraft speed, flight levels, and
often headings in order to maintain safe and efficient flow of air
traffic throughout the airspace control sectors. Other entities
modeled in the ACES simulation include the airline operating
centers, which are run by each airline and provide schedule and
gate information to their own aircraft, and the aircraft themselves.
Previous work has attempted to provide a more or less complete
functional analysis of enroute [15]. Those have not yet been turned
into workable computational agents. Some progress toward a
complete controller agent has begun, but the controller’s task is a
complex mixture of spatial, geometric, temporal, and procedural
reasoning. No software agent has yet been able to handle more
than a portion of the entire task though progress in applying rule-
based systems has yielded agents with some capability.
 We have begun our agent development by focusing on the
task of enroute controllers, following existing task analyses [16,
17]. A high level functional analysis of a portion of current enroute
control is shown in Figure 3. Each sector is managed by two
controllers, the radar controller (R-side) and the radar associate
controller (D-side), whose duties complement and overlap. The R-
side controller is the primary controller in contact with aircraft.
The D-side controller assists, sharing responsibility for conflict
detection and planning, as well as performing routine
housekeeping. It is apparent from Figure 3 and the earlier
discussion that an individual controller is an agent among airspace
entities. Each individual agent shares responsibility for ensuring
safe operations, but those responsibilities are themselves divided.
For example, the aircrew is primarily responsible for the safety of
their aircraft, the controller for the safety of all aircraft in his/her
sector. In addition to the formal rules for controllers (as well as
aircrew) there exist informal practices. These informal rules have
not been exhaustively studied, but are apparent in the behavior of
controllers. They represent social contracts between entities that
have emerged with time. Because of reciprocity, many informal
rules act for the general good of all players. For example,
controllers will try to manage the traffic in their sector so that they
do not overburden the downstream controller to whom they hand
the traffic off. This cooperative behavior may not apply if they are
busy.

Handoff aircraft (a/c)
Receive handoff
Resolve conflicts
Resolve metering/spacing violations
Respond to Alarms
Provide weather avoidance maneuvering
Provide flight plan conformance
Communicate clearances
Accommodate requests
Communicate with descent sectors
Receive Status Updates
Housekeeping

Acquire SA for AC
Determine Response
Reject

Detect Acceptance
Issue Freq Change
Receive Feedback
Mark AC as Shipped

Accept

Initiate handoff transfer

Detect Violation
Detect Top of Descent
Detect Conflicts
Determine weather impact on a/c
Monitor radio

Monitor Situation

Radar Controller (R-side)

Perform conflict detection
Perform trial planning
Coordinate with other sectors
Assist with pilot clearance readback
Manage a/c list and flight data
Enter flight plan amendments

Radar Associate Controller (D-side)

Figure 3. High-Level Tasks of Enroute Controllers

 We developed a simple model of this procedure in Apex using
observed times for the interaction of the various agents involved.
As shown in Figure 3, the tasks of air traffic controllers require
multi-tasking capability. For example, situation monitoring task is
performed in parallel with other tasks, as are handoffs. However,
in our Agent model, tasks that require the same resources such as
radio, trackball, or keyboard, can temporarily prevent parallel
execution. For example, a controller can visually detect two
handoffs simultaneously, but the controller can only accept one
handoff at a time because the task requires the same resource, the
use of trackball. This illustrates how the resources in our Apex
controller agent capture capabilities and constraints on human
behavior, which have consequences for overall performance.
 Typically R-Side controllers initiate handoff when an aircraft
reaches a trigger location (e.g. 30nm from boundary of next sector)
and the receiving controller accepts a handoff before an aircraft
enters his sector. Once a handoff is accepted, the transferring
controller issues a frequency change clearance before the aircraft
leaves his control sector. The details of this Transfer of
Communications (TOC) differ for voice or datalink, and this
difference is of interest in assessing the impact of datalink. Then
flight crew will tune new frequency and make an initial contact to
receiving controller in next sector. Figure 4 shows the high-level
tasks of controllers for initiating and receiving handoffs.

Situation
Monitoring

Initiate
Handoff

Receive
Handoff

Receive
Response

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Accept
Handoff

Delay
Handoff

Reject
Handoff

No
Response

Issue Frequency
Change to Pilot

Accept
Handoff

Delay
Handoff

Reject
Handoff

Receive Pilot
Readback

Mark AC
Shipped

Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task Completed

Situation
Monitoring

Initiate
Handoff
Initiate
Handoff

Receive
Handoff
Receive
Handoff

Receive
Response
Receive

Response

Request HO
via Voice or

Enter Keystrokes

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Wait for RC’s
Response

Accept
Handoff
Accept

Handoff
Delay

Handoff
Delay

Handoff
Reject

Handoff
Reject

Handoff
No

Response
No

Response

Issue Frequency
Change to Pilot

Issue Frequency
Change to Pilot

Accept
Handoff
Accept
Handoff

Delay
Handoff
Delay

Handoff
Reject

Handoff
Reject

Handoff

Receive Pilot
Readback

Receive Pilot
Readback

Mark AC
Shipped
Mark AC
Shipped

Receive Pilot
Callin Contact
Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task CompletedTask Completed

Figure 4. Task Analysis for a Handoff Task

 The hierarchical goal structure of a GOMS model is
expressed in Apex using its Procedure Description Language
(PDL). PDL steps are decomposed hierarchically into procedures
of simpler steps until those steps bottom out in primitive actions
that occupy human resources. Figure 5 shows high-level PDL
procedures for the handoff task that decompose into low-level
procedures as shown in Figure 6.

Figure 5. High-Level Task Procedures for Enroute Controller

(procedure
 (index (detect initiating handoff ?aircraft))
 (step s1 (decide whether to initiate handoff ?aircraft))
 (step s2 (initiate handoff ?aircraft to next controller)
 (waitfor ?s1))
 (step s3 (monitor response from receiving controller)
 (waitfor ?s2))
 (step s4 (issue frequency change to pilot) (waitfor ?s3))
 (step s5 (mark ac shipped)
 (waitfor ?s4 (pilot readback)))
 (step done (terminate) (waitfor ?s5)))

(procedure
 (index (receive handoff request for ?ac-symbol))
 (step s1 (acquire sa for handoff ac))
 (step s2 (determine response) (waitfor ?s1))
 (step s3 (respond to initiating controller ?ac-symbol)
 (waitfor ?s2))
 (step s4 (wait for initial contact from pilot)
 (waitfor ?s3))
 (step done (terminate) (waitfor ?s4)))

Figure 6. Template-Level Procedures for Enroute Controller

SUMMARY

 We have described the use of human agent models in agent-
based simulation as a mechanism for analyzing large-scale
complex systems, such as the advanced air transportation system.
We illustrated this by showing a simple agent model of air traffic
controller for handoff using a CPM-GOMS task analysis integrated
into the Apex computational architecture. The Apex agent interacts
with a distributed agent-based simulation (ACES), making it
possible to analyze the impact of changes of human behavior on
the overall system performance. We are exploring the use of the
model to evaluate new technologies for air traffic control.
 As agent technologies and distributed simulation techniques
advance, the use of simulated human agent models is expected to
provide increased benefits for system design and analysis.
However, several practical issues in integrating high-fidelity
human performance models into a large-scale simulation must first
be resolved. In particular, methods of synchronizing each agent’s
time advance with other agents, and the computational demands of
the human agent must be more fully worked out.

ACKNOWLEDGEMENTS

 This work was supported by the Virtual Airspace Modeling
and Simulation project of the NASA Airspace Systems program.
The authors wish to thank Lisa Bjarke, Karlin Roth, and Larry
Meyn for programmatic assistance, and Parimal Kopardekar and
Ken Leiden for making available task analysis and task modeling
data.

REFERENCES

[1] Wickens, C. D.; A. S. Mavor; J. McGee; National Research

Council (U.S.). Panel on Human Factors in Air Traffic
Control Automation. 1997. Flight to the future : human
factors in air traffic control. Washington, D.C.: National
Academy Press.

[2] Card, S. K.; T. P. Moran; A. Newell. 1983. The psychology of
human-computer interaction. Hillsdale, N.J.: L. Erlbaum
Associates.

[3] Lee, S. M. 2002. "Agent-Based Simulation of Socio-
Technical Systems: Software Architecture and Timing
Mechanisms," Doctoral dissertation, Georgia Institute of
Technology.

[4] Pritchett, A. R.; S. M. Lee; K. M. Corker; M. A. Abkin; T. G.
Reynolds; G. Gosling; A. Z. Gilgur. 2002. "Examining air
transportation safety issues through agent-based simulation
incorporating human performance models," in Proceedings of
the IEEE/AIAA 21st Digital Avionics Systems Conference.

[5] Jones, R. M.; J. E. Laird; P. E. Nielsen; K. J. Coulter; P.
Kenny; F. V. Koss. Spring 1999. "Automated Intelligent
Pilots for Combat Flight Simulation," in AI magazine, pp. 27-
42.

[6] Callantine, T. 2001. "Agents for Analysis and Design of
Complex Systems," In Proceedings of the 2001 International
Conference on Systems, Man, and Cybernetics , 567-573.

[7] Laughery, K. R. and K. M. Corker.1997. "Computer
Modeling and Simulation," in Handbook of Human Factors
and Ergonomics , G. Salvendy, Ed. New York: John Wiley
and Sons, Inc., pp. 1375-1408.

[8] Freed, M. 1998. "Simulating Human Performance in
Complex, Dynamic Environments," Doctoral dissertation,
Northwestern University.

[9] John, B. E. 1990. "Ext ensions of GOMS analyses to expert
performance requiring perception of dynamic visual and
auditory information," In Proceedings of CHI, Seattle,
Washington, 107-115.

[10] John, B. E. and W. D. Gray. 1995. "CPM -GOMS: An
Analysis Method for Tasks with Parallel Activities," In
CHI'95 Conference companion on Human factors in
computing systems, Denver, Colorado, 393-394.

[11] Gray, W. D.; B. E. John; M. E. Atwood. 1993. "Project
Ernestine: Validating a GOMS Analysis for Predicting and
Explaining Real-World Task Performance," Human-
Computer Interaction, vol. 9, pp. 237-309.

[12] John, B. E., Vera, A. H., Matessa, M., Freed, M., and
Remington, R. 2002. "Automating CPM-GOMS," in
Proceedings of CHI'02: Conference on Human Factors in
Computing Systems: New York, ACM Press, pp. 147-154.

[13] Matessa, M.; A. Vera; B. E. John; R. Remington; M. Freed.
2002. "Reusable Templates in Human Performance
Modeling," In Proceedings of the Twenty-fourth Annual
Conference of the Cognitive Science Society.

[14] Raytheon ATMSDI Team.2002. "Creation of a Modeling and
Simulation Capability to Support NAS-Wide Analyses of
Advanced ATM Tools and Concepts," NASA Contractor
Report CTO-07 Documents, Contract Number NAS2-00015.

[15] Seamster, T. L.; R. E. Redding; J. R. Cannon; J. M. Ryder; J.
A. Purcell. 1993. "Cognitive task analysis of expertise in air
traffic control," International Journal of Aviation Psychology,
vol. 3, pp. 257-283.

[16] Leiden, K.2000. "Human Performance Modeling of En Route
Controllers," Micro Analysis & Design, Inc., Boulder, CO
RTO-55 Final Report, Prepared for NASA Ames Research
Center, December.

[17] Niessen, C.; S. Leuchter; K. Eyferth. 1998. "A psychological
model of air traffic control and its implementation," In
Proceedings of the Second European Conference on
Cognitive Modeling, Nottingham, U.K., 104-111.

(procedure
 (index (initiate handoff ?ac-symbol to receiving controller))
 (step s1 (move-cursor-to ?ac-symbol))
 (step s2 (click trackball on ?ac-symbol) (waitfor ?s1))
 (step done (terminate) (waitfor ?s2)))

(procedure
 (index (move-cursor-to ?target))
 (profile right-hand)
 (step s1 (trackball-time ?target => ?time))
 (step s2 (start -activity right-hand moving-ic-trackball
 :object ?target :duration ?time => ?a)
 (waitfor ?s1))
 (step s3 (terminate) (waitfor (completed ?a))))

(procedure
 (index (click trackball on ?target))
 (profile right-hand)
 (step s1 (trackball-object => ?object))
 (step s2 (start -activity right-hand clicking-trackball
 :object ?object :ac-symbol ?target :duration 200 => ?a)
 (waitfor ?s1))
 (step s3 (terminate) (waitfor (completed ?a))))

